Local Multi-Head Channel Self-Attention for Facial Expression Recognition
نویسندگان
چکیده
Since the Transformer architecture was introduced in 2017, there has been many attempts to bring self-attention paradigm field of computer vision. In this paper, we propose LHC: Local multi-Head Channel self-attention, a novel module that can be easily integrated into virtually every convolutional neural network, and is specifically designed for vision, with specific focus on facial expression recognition. LHC based two main ideas: first, think best way leverage channel-wise application instead more well explored spatial attention. Secondly, local approach potential better overcome limitations convolution than global attention, at least those scenarios where images have constant general structure, as LHC-Net achieves new state-of-the-art FER2013 dataset, significantly lower complexity impact “host” terms computational cost when compared previous state-of-the-art.
منابع مشابه
Facial expression recognition based on Local Binary Patterns
Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملLocal binary patterns for multi-view facial expression recognition
1077-3142/$ see front matter 2010 Elsevier Inc. A doi:10.1016/j.cviu.2010.12.001 ⇑ Corresponding author. E-mail addresses: [email protected] (S ac.uk (R. Bowden). Research into facial expression recognition has predominantly been applied to face images at frontal view only. Some attempts have been made to produce pose invariant facial expression classifiers. However, most of these atte...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملfacial expression recognition based on local binary patterns
classical lbp such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. in this paper, we introduce an improved lbp algorithm to solve these problems that utilizes fast pca algorithm for reduction of vector dimensions of extracted features. in other words, proffer method (fast pca+lbp) is an improved lbp algorithm that is extracted ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information
سال: 2022
ISSN: ['2078-2489']
DOI: https://doi.org/10.3390/info13090419